Sep 21,2023

Pentest Report - Sep 21,2023

Contents
1 Executive Summary 2
1.1 RiskRatingChart e 2
1.2 Service SCope o i e e e e e e e e e e e e e e e e e e e 2
1.3 SummaryofStrengths 3
1.4 SummaryofWeaknesses e e e e e e e e 4
1.5 StrategicRecommendations 4
2 Security Assessment 5
2.1 Organization e e 5
2.2 Methodology e e e 5
3 Test Narrative 6
3.1 InformationGathering 6
3.2 Attack Surface and Passive Reconnaissance 6
3.3 Security Defense Checks and Vulnerability Detection. 6
3.4 Active Scanning and VulnerabilityResearch 6
3.5 Deeptestingand Exploitation L o o 6
4 Software Flashing and Update Process 7
4.1 BLEOTA . . e e e e e e e 7
42 SWDFlash L e e e e e e 7
5 Hardware Recommendations 8
5.1 ComplimentstotheChef. e 8
6 SWD 9
6.1 Narrative e e e e e e e e 9
6.2 Enumeration e e 10
7 Fuzzing — 13
7.1 Narrative o o e e e e e e e e e e e e e 13
7.2 FinalAFLstatus e e e 13
7.3 FuzzingTriage o o i e e e e e e e e e e e 13
7.3.1 Stackbased bufferoverflow o o oo L. 13
7.3.2 MISCISSUBS .« . o v i e 15
T4 FIXES . o o o e e e e e e e e e e e e 15

Block Harbor Cybersecurity 1

Pentest Report - Sep 21,2023

8 Threat Model 18
81 Diagram e e e e e e 18

9 BLE Protocol 19
9.1 Narrative e e e e e e e e e e e e 19
9.2 Enumeration e e e e e e e e e e e e e 19

9.3 Tested Bluetooth Exploits e 24
9.3.1 Braktooth e e 24

9.3.2 RandomFlooding (NotVulnerable) 24

9.3.3 KNOB(NotVulnerable) e 25

9.4 Sweyntooth AttackSuite 26
941 SUMMAIY . & . v vt e 26

9.4.2 Attack script - Microchip_non_compliant connection (Not Vulnerable) 26

9.4.3 Attack script - anomaly_unexptected_encryption_start (Not Vulnerable) 27

9.4.4 Attack script - connection_req_crash_truncated (Not vulnerable) 27

10 Appendix 29
10.1 ACONYMS & o o o o e 29

Block Harbor Cybersecurity 2

Pentest Report - Sep 21,2023
Provider Contact Prepared For

Block Harbor Cybersecurity -

Tristan Buffington, Lead Automotive Penetration _

Tester

tristan.buffington@blockharbor.io _

Prepared on Proposal Reference

September 21, 2023 _

Scope Summary Timeline (est.)

_Dongle 5 Weeks

Block Harbor Cybersecurity 1

Pentest Report - Sep 21,2023

1 Executive Summary

Block Harbor performed a penetration test against the-dongle manufactured by-. Three
security issues were found after code review, fuzzing, and device analysis. However, these required
user interaction, as to interface with the file uploading service on the device, it is required to press the
button on the case. Couple with that with weak debug protections allowing SWD, the overall risk rating
is a medium due to the impact a device compromise could have on an individuals wallet, or vehicle.

1.1 Risk Rating Chart

Very Low Medium High Critical
Low
D

Very
unlikely 3-0 4-0
Unlikely 141 24 341 44
Somewhat 1-2 22 3-2
Very 0-3 1-3 23 33
Extremely 04 14

1.2 Service Scope

The purpose of this testing was to evaluate and calculate risk associated with the target system by
approaching the system from an attacker’s perspective. Because systems often are complex with data
flowing between different teams and organizations, the scope is clearly defined in a pre-engagement
meeting to set boundaries for testing. The scope included:

Block Harbor Cybersecurity 2

Pentest Report - Sep 21,2023

. - Dongle

While the testing approach was guided by threat modeling and attack surface enumeration as a part of
Block Harbor Cybersecurity’s methodology, the assessment focused our attention and goals on the

following components of the target:

« Firmware analysis

« Source code analysis

« Hardware debug interfaces

+ SWD

« CAN

+ Bluetooth

+ LORA

« NFC

« Software Flashing and Update Process

1.3 Summary of Strengths

Number 1
Strength Not vulnerable to tested Bluetooth CVE’s
Description After running off the shelf Bluetooth tests against the-dongle,

it was observed that the device was not vulnerable to any of the tested
CVE’s described in the Bluetooth section.

Number 2
Strength Not exploitable without user interaction.
Description After analysis of the code, and crash found through fuzzing, it was

observed that in order to exploit the issue, it would be necessary for a
local user to press a physical button on the device, in order to send an
exploit.

Block Harbor Cybersecurity 3

Pentest Report -

Sep 21,2023

1.4 Summary of Weaknesses

Number 1

CVSSv3.1 Severity 5.6 - MEDIUM

Weakness Weak debug protections

CVSS Reference link

Description A physically connected user is able to run arbitrary code and inspect
the state of the machine, via the unprotected SWD interface.

Number 2

CVSSv3.1 Severity 5.5- MEDIUM

Weakness Stack Buffer Overflow

CVSS Reference link

Description

A stack based buffer overflow was found in the code responsible for
parsing DBC files. This could allow a local user to gain remote code
execution on their device.

Number

CVSSv3.1 Severity
Weakness

CVSS Reference

Description

3

2.1-LOW

Denial of service
link

A uniquely crafted DBC file could result in a denial of service to the
device.

1.5 Strategic Recommendations

The following items are the strategic recommendations from Block Harbor.

+ Locking down of the SWD interface.

«+ Enabling stack cookies by adding a new compile time flag (see Fixes in the Fuzzing section)

Block Harbor Cybersecurity

Pentest Report - Sep 21,2023

2 Security Assessment

The intention of a security assessment is to analyze hardware, software, or information. The security
assessment reveals the findings similar to those than an attacker could achieve.

2.1 Organization

Block Harbor is a team of experts that united to provide security solutions where the cyber and physical
worlds intersect. Block Harbor specializes in automotive & mobility ecosystems, cloud environments,
industrial control systems, embedded & internet of things devices. As a leader in the Automotive
Cybersecurity space, we have been trusted to provide top-quality assessments for automotive OEMs
and suppliers.

Given a timeline of 5 weeks, Block Harbor Cybersecurity (BH) assessed security implementations,
attempted to exploit the system, and organized findings into a report to yield insight from an attacker’s
perspective.

2.2 Methodology

Using tools at our disposal, Block Harbor Cybersecurity’s methodology was derived from extensive
threat modeling. This yielded a tailored approach with similar motivations to that of the adversaries
that a system will face in a deployment. From a high-level, the security assessment will follow:

1) Information Gathering

2) Attack surface enumeration & passive reconnaissance

3) Security defense/protection check & vulnerability detection
4) Active scanning & vulnerability research

5) Deep testing & attempt to exploit

6) Assessment reporting

Further, this methodology allows us to perform consistent security assessments when the target system
is seeking to implement a vehicle cybersecurity engineering methodology such as ISO/SAE 21434.

Block Harbor Cybersecurity 5

Pentest Report - Sep 21,2023

3 Test Narrative

3.1 Information Gathering

Block Harbor began the project by performing reconnaissance against the provided- device. This
process involves extensive research, gathering as much information as possible before beginning
active testing. Block Harbor performed standard reconnaissance against the source code provided
and investigated the exposed SWD debug interface.

3.2 Attack Surface and Passive Reconnaissance

Block Harbor proceeded to build a threat model identifying attack vectors into the system and under-
standing the exposed services that may be of interest to an attacker as well as investigating the debug
interfaces present on the hardware. Block Harbor discovered the points of interest to an attacker to be
the CAN interface, the code responsible for parsing uploaded DBC files, Bluetooth, and SWD.

3.3 Security Defense Checks and Vulnerability Detection

Block Harbor enumerated the defensive posture of the-dongle and found the security to be
well rounded overall with a minimal attack surface that can be explored in the provided threat model
diagram in section 8.

3.4 Active Scanning and Vulnerability Research

Block Harbor then proceeded to map out the code in the device that would receive data from outside
sources and read the code of various sub modules within the device. Block Harbor focused on areas of
interest but noted that there was limited attack surface for what would be present to an attacker.

3.5 Deep testing and Exploitation

After discussion with the-team it was understood that no POC was necessary in order to demon-
strate the impact of the found issues.

Block Harbor Cybersecurity 6

Pentest Report - Sep 21,2023

4 Software Flashing and Update Process

4.1 BLEOTA

Utilizingmcumgr that was installed via go install github.com/apache/mynewt-mcumgr-
cli/mcumgr@latest Block Harbor was able to upload a new firmware revision without any user

interaction on the hardware revision that was shipped to us.

sudo ~/go/bin/mcumgr --conntype ble -i ® --connstring ctlr_name=hcil,

peer_name_46®159®®®2‘ image upload ~/Documents_

.signed.bin

After, Block Harbor was able to switch to the newly uploaded image with:

sudo ~/go/bin/mcumgr --conntype ble -i ® --connstring ctlr_name=hcil,
peer_name=' _—246@1590002 ' image test
dedd63335a81924917353638344bbf3390eadaal765310a621589b2bfaboaf2b

After, it was observed that this had deleted the first image slot and was now in the newly uploaded

image.

sudo ~/go/bin/mcumgr --conntype ble -i 1 --connstring ctlr_name=hcil,
peer_name G ©00000000000' image list

Images:

image=0 slot=0
version: 0.0.24
bootable: true
flags: active confirmed
hash:

Split status: N/A (0)

Finally, it was noted that it was impossible to now upload a new image with the same command.

4.2 SWD Flash

Using pyocd Block Harbor confirmed it is possible to flash different revisions of software with the
following command:

python3 -m pyocd flash --frequency=4000000 -t nrf52840 ~/Downloads/zephyr.
signed.hex

This was intended behavior. Attempting to flash unsigned code was unsuccessful:

python3 -m pyocd flash --frequency=4000000 -t nrf52840 ~/Downloads/zephyr.
hex

Block Harbor Cybersecurity 7

Pentest Report - Sep 21,2023

5 Hardware Recommendations

5.1 Compliments to the Chef

Block Harbor does not have any hardware recommendations based on our understanding of the current
hardware design.

Block Harbor Cybersecurity 8

Pentest Report - Sep 21,2023

6 SWD

6.1 Narrative

Block Harbor was able to connect to the SWD interface of the chip, by soldering to the correct pins and
utilizing a STLINK as a programmer: the setup of which can be seen below:

Figure: Micro soldering

Block Harbor Cybersecurity 9

Sep 21,2023

Figure: STLINK connection

This allowed full control of the device. This is currently intended behavior according to the-
team. This was necessary as the provided cable to connect to SWD was non functional with our
programmer.

6.2 Enumeration

Below is information gathered from the device.

> nrf5 1info

[factory information control block]

Block Harbor Cybersecurity 10

Pentest Report - Sep 21,2023

code page size: 4096B

code memory size: 1024kB

code region 0 size: OkB

pre-programmed code: not present

number of ram blocks: 4294967295

ram block 0@ size: 4294967295B

ram block 1 size: OB

ram block 2 size: OB

ram block 3 size: OB

config 1id: ffffoleb

device id: 0x382dc5e97cd390e0

encryption root: N

identity root: Oxc8f4e596fb38d77e504f1558221e85a8

device address type: Oxffffffff

device address: 0x9cbb603202cce260

override enable: ffffffff

NRF_IMBIT values: ffffffff ffffffff ffffffff ffffffff frrrrfff
BLE_IMBIT values: ffffffff ffffffff ffffffff ffffffff frrrrfff

[user information control block]

code region 0 size: OkB

read back protection configuration: ffff
reset value for XTALFREQ: ff

firmware 1id: oxffff

An example of modifying the memory of the application can be seen below. First, a gdbserver connec-
tion was started:

python3 -m pyocd gdbserver

Then the server was attached to and memory was shown to be written. This will allow for any code to
be executed, bypassing the current secure boot protections:

gef: gef-remote localhost 3333
gef: hexdump byte 0x0

Ox00000000 cO 6d 00 20 21 26 00 00 df 88 00 00 f5 25 00 00 .m.
95580000 %..

Ox00000010 f5 25 00 00 f5 25 00 00 f5 25 00 00 00 0O 00 00
oBeealbeeePBeoenne

Ox00000020 00 00 0O 0O 00 OO 0O OO OO 0O 00 0O 6d 21 0O 60

!

Ox00000030 f5 25 00 00 00 00 0O 00 b9 20 00 00 f5 25 00 00

eMBeseoaas ceee

gef: set *xOx0=0x0f

gef: hexdump byte 0x0

Block Harbor Cybersecurity 11

Pentest Report - Sep 21,2023

Ox00000000 of 00 00 00 21 26 00 00 df 88 00 00 f5 25 00 00
! %. .
OXOéééééfg %5 25 00 00 f5 25 00 00 f5 25 00 0O 00 00 00 00
TIPS TP T
0x06é00020 00 00 0O 0O 0O 0O 0O OO 6O 00 00 00 0d 21 00 00
!
OXOééééééé %é.is 00 00 00 00 00 00 b9 20 00 00 f5 25 00 00

os
©/06 o o 0 s e e e/00 e

It is understood that-will disable the SWD interface to protect against this kind of attack.

> flash banks

#0 : nrf52.flash (nrf5) at Ox00000000, size Ox00100000, buswidth 1,
chipwidth 1

#1 : nrf52.uicr (nrf5) at Ox10001000, size Ox00001000, buswidth 1,
chipwidth 1

Block Harbor Cybersecurity

12

Pentest Report - Sep 21,2023

7 Fuzzing

7.1 Narrative

Below are the results from Block Harbor’s fuzzing campaign, using the test DBC file provided in the
-project, as well as various DBC files from the opendbc. This was achieved by ripping out the
DBC parsing code present in the Macaroon source tree, adding some defines from the Zephyr SDK, and
then writing a small wrapper around the code. This was then instrumented with AFL++ and fuzzing
was started.
int main(int argc, char*xx argv) {
FILEx fp;

uint8_t buf[1024];
app_dbc_data_t _dbc_data = {0};

fp = fopen(argv[1], "r");
size_t rc = fread(buf, 1, sizeof(buf), fp);
app_dbc_parse(buf, rc, & _dbc_data);

}

afl-clang-fast ./test.c ./app-dbc-utils.c
afl-fuzz -i ./dbcs/ -o ~/fuzz2-results/ -- ./a.out @@

7.2 Final AFL status

Block Harbor ran AFL++ on the target for 12 days. After 1 week of no new finds, Block Harbor stopped
the fuzzing campaign. The reasoning behind this is after 1 week of no new results it is extremely unlikely
to observe any new paths.
American fuzzy lop ++4.09a {default} (./a.out) [fast]
run time : 12 days, © hrs, © min, 29 sec
last new find : 9 days, 17 hrs, 48 min, 16 sec

last saved crash : 7 days, 7 hrs, 53 min, 31 sec
last saved hang : none seen yet

7.3 Fuzzing Triage
7.3.1 Stack based buffer overflow

After sufficient test cases were acquired, Block Harbor set to triage the crash. This was accomplished
with the following compiler flags for our mock program.

Block Harbor Cybersecurity 13

Pentest Report - Sep 21,2023

gcc test.c app-dbc-utils.c -fsanatize=address

This allows Block Harbor to easily debug memory corruption issues. In this case, Block Harbor can
follow along and see that the out of bounds write occursin get_next_non_empty_Tline

~/fuzzing/a.out /home/ubuntu/fuzz2-results/default/crashes/id:000038,
siubuntu@decomp:~/triage$ ~/fuzzing/a.out /home/ubuntu/fuzz2-results/
default/crashes/id:000038,si1g:06,src:00

0137,time:610480,execs:1221863,op:havoc,rep:25

==541172==ERROR: AddressSanitizer: stack-buffer-overflow on address ©
x7ffe9d2e5360 at pc 0x55e7a32955b5 bp 0x7ffe9d2e5070 sp Ox7ffe9d2e5060
WRITE of size 1 at Ox7ffe9d2e5360 thread TO
#0 Ox55e7a32955b4 1in get_next_non_empty_line (/home/ubuntu/fuzzing/a.
out+0x25b4)
#1 0x55e7a329726f 1in app_dbc_parse (/home/ubuntu/fuzzing/a.out+0x426f)
#2 0x55e7a3297c20 1in main (/home/ubuntu/fuzzing/a.out+0x4c20)
#3 Ox7f250dac7082 1in __libc_start_main ../csu/libc-start.c:3608
#4 0x55e7a32953cd 1in _start (/home/ubuntu/fuzzing/a.out+0x23cd)

Address Ox7ffe9d2e5360 1is located 1in stack of thread TO at offset 576 1in
frame
#0 0x55e7a32970dd 1in app_dbc_parse (/home/ubuntu/fuzzing/a.out+0x40dd)

This frame has 2 object(s):
[48, 52) 'parser_state' (line 443)
[64, 576) 'line_buffer' (line 439) <== Memory access at offset 576
overflows this variable
HINT: this may be a false positive 1if your program uses some custom stack
unwind mechanism, swapcontext or vfork
(longjmp and C++ exceptions xarex supported)
SUMMARY: AddressSanitizer: stack-buffer-overflow (/home/ubuntu/fuzzing/a.
out+0x25b4) 1in get_next_non_empty_line
Shadow bytes around the buggy address:
0x100053a54al0: 00 OO0 OO0 OO0 OO 00 OO OO OO OO OO 0O OO 0O 0O 00
0x100053a54a20: 00 00 00 00 f1 f1 f1 f1 f1 f1 04 f2 00 0 00 00
0x100053a54a30: 00 OO0 00 OO0 OO 00 OO OO OO OO OO 0O OO 00 0O 00
0x100053a54a40: 00 OO0 OO0 OO0 OO 00 OO OO OO OO OO 0O OO 0O 0O 00
0x100053a54a50: 00 OO0 OO0 OO0 OO 00 OO OO OO0 OO OO 00 OO 0O 6O 00
=>0x100053a54a60: 00 00 OO0 OO 0O OO OO 0O OO 0 00 EO[f3]f3 f3 3
0x100053a54a70: f3 f3 f3 f3 00 00 0O OO OO0 0O OO OO 0O OO OO 00
0x100053a54a80: 00 00 f1 f1 f1 f1 f1 f1 00 00 O OO 0O OO OO 00
0x100053a54a90: 00 OO0 OO0 OO0 OO 00 OO OO OO0 OO OO 0O OO 0O 6O 00
0x100053a54aa0: 00 OO0 OO0 OO0 OO 00 OO OO OO OO OO OO0 OO 0O 6O 00
0x100053a54ab0: 00 OO0 00 OO OO OO OO OO OO 0O OO OO 0O OO OO 00
Shadow byte legend (one shadow byte represents 8 application bytes):
Addressable: 00
Partially addressable: 01 02 03 04 05 06 07
Heap left redzone: fa
Freed heap region: fd

Block Harbor Cybersecurity 14

Pentest Report - Sep 21,2023

Stack left redzone: f1
Stack mid redzone: f2
Stack right redzone: f3
Stack after return: f5
Stack use after scope: f8
Global redzone: 9
Global 1init order: f6
Poisoned by user: f7
Container overflow: fc
Array cookie: ac
Intra object redzone: bb
ASan internal: fe
Left alloca redzone: ca
Right alloca redzone: cb
Shadow gap: cc

==541172==ABORTING

It was observed thatif the src_buf_Tlenisgreater than 512, we will achieve a stack based buffer over-
flow in the get_next_non_empty_Tline function as there is no check that this write is happening
outside of the dst buffer from the following lines:
for (i = ©; i < src_buf_len, i < dst_buf_len; 1i++) {
S S il D
*(line_buf + line_len) = c;
line_len++;

}

See 1d:000015,s51g:06,src:000135,time:600084,execs:1201109,0p:havoc,rep
: 36 for an example of a crash due to this out of bounds write.

7.3.2 Miscissues

Minor issues, such as one byte out of bounds reads were discovered, however these are not determined
tobe exploitable issues. One which results in a denial of service when attempting to parse the signals
.dbcfile. See 1d:000005,s7g:11,src:000067,time:8499,execs:18729,0op:havoc,
rep: 2 foran example of a null ptr dereference.

All the associated files can be found attached to the report in the testcases. zipfile.

7.4 Fixes

Various changes, such as checking the length of the destination buffer, and switching to strncpy will
alleviate most of these issues. This should not be viewed as a comprehensive list of changes to make,
but a starting point for further analysis. Note that line numbers in the diff file may not directly apply to

the- source code.

Block Harbor Cybersecurity 15

Pentest Report - Sep 21,2023

diff --git a/.app-dbc.h.swp b/.app-dbc.h.swp

deleted file mode 100644

index b807734..0000000

Binary files a/.app-dbc.h.swp and /dev/null differ

diff --git a/app-dbc.h b/app-dbc.h

index 64cf2cb..40f8c62 100644

--- a/app-dbc.h

+++ b/app-dbc.h

@@ -102,6 +102,6 @@ int app_dbc_parse(const uint8_t xbuf, size_t len,
app_dbc_data_t xdbc_data);

int app_dbc_decode_frame(const struct can_frame xframe, const
app_dbc_data_t *dbc_data, app_dbc_data_value_t xout_values, size_t
out_values_size);

// for internal use, exposed for unit testing only
-size_t get_next_non_empty_line(const uint8_t *src_buf, size_t src_buf_len
, uint8_t xLline_buf);
+size_t get_next_non_empty_line(const uint8_t *src_buf, size_t src_buf_len
, uint8_t xLline_buf, size_t dst_buf_len);

#endif //__APP_DBC_H
diff --git a/test.c b/test.c
index 33ad3e6..216d6af 100644
-—-- a/test.c
+++ b/test.c
@@ -17,13 +17,15 @@ enum Lline_parse_state_t {

#define APP_DBC_CAN_EXTENDED_ID_MASK (0x1FFFFFFFU)

-size_t get_next_non_empty_line(const uint8_t *src_buf, size_t src_buf_len
, uint8_t xLline_buf)

+size_t get_next_non_empty_line(const uint8_t *src_buf, size_t src_buf_len
, uint8_t xLline_buf, size_t dst_buf_len)

{
int 1,
size_t line_len = 0;
enum line_parse_state_t parse_state = LINE_PARSE_LINE_START;
for (i = 0; i < src_buf_len; i++) {
+ if (i >= dst_buf_len - 1)
+ break;

char ¢ = x(src_buf + 1);

if (parse_state == LINE_PARSE_LINE_START) {
@@ -99,7 +101,7 @@ 1int parse_msg_name(char *xline_state, app_dbc_message_t
*message)

}
//LOG_DBG("Line state: %s", xline_state);

= strcpy(message->name, token);

Block Harbor Cybersecurity 16

Pentest Report - Sep 21,2023

+ strncpy(message->name, token,sizeof(message->name));
//LOG_DBG("Name: %s", message->name);
return APP_DBC_ERR_OK;

@@ -170,7 +172,7 @@ int parse_sig_name(char *xline_state,
app_dbc_message_t xmessage, app_dbc_signal
}
//LOG_DBG("Line state: %s", xline_state);

= strcpy(signal->name, token);

+ strncpy(signal->name, token, sizeof(signal->name));
//LOG_DBG("Name: %s", signal->name);
return APP_DBC_ERR_OK;

@@ -365,7 +367,7 @@ int parse_sig_unit(char *xline_state,
app_dbc_message_t *message, app_dbc_signal
}
//LOG_DBG("Line state: %s'", xLline_state);

= strcpy(signal->unit, token);
+ strncpy(signal->unit, token, sizeof(signal->unit));

}

//LOG_DBG("Unit: %s", signal->unit);
@@ -447,7 +449,7 @@ int app_dbc_parse(const uint8_t xbuf, size_t len,
app_dbc_data_t *dbc_data)
dbc_data->messages_size = 0;

while (len_left_to_parse > 0) {
-size_t parsed_bytes = get_next_non_empty_line(buf + buffer_index,
len_left_to_parse, line_buffer);
+size_t parsed_bytes = get_next_non_empty_line(buf + buffer_index,
len_left_to_parse, line_buffer, sizeof(line_buffer));
len_left_to_parse -= parsed_bytes;
buffer_index += parsed_bytes;

To mitigate the impact of any potential memory corruption, Block Harbor recommends the usage of

stack cookies or canaries in order to protect the integrity of the stack. This is achieved by use of the
CONFIG_STACK_CANARIES compile time flag.

Block Harbor Cybersecurity 17

Pentest Report - Sep 21,2023

8 Threat Model

8.1 Diagram

Block Harbor constructed a thread model to present at a high level where data flows in the system,
and to highlight potential avenues of interest. This resulted in most of Block Harbor’s efforts being
spent investigating the physical debug ports, wireless interface, and areas of code that would parse
user supplied input.

Potential Malicious Input

Sign Transaction

Figure: Threat model

Block Harbor Cybersecurity 18

Pentest Report - Sep 21,2023

9 BLE Protocol

9.1 Narrative

A thorough test was performed on the Bluetooth protocol utilizing an esp32 board, an nrf52840 board,
the nrfconnect application, and publicly available Bluetooth exploits. It was noted that the on the
software revision tested, the-device connects without pairing but the pairing authentication fails.
The findings are mentioned below.

9.2 Enumeration

Utilizing nrfconnect tool, Block Harbor was able to connect to the-dongle and list out the services
offered by the BLE protocol.

Block Harbor Cybersecurity 19

Pentest Report - Sep 21,2023

_ | o

24601590004

FB:D7:51:65:89:F2

» Generic Attribute

* Generic Access

» SC30CA0068594D6CAETBED2CO8CAFGFD
» S5C307FA468594D6CABTBEBD2CO98CAFEFD
» SC30AADESBS94DECAB7BED2CY8CoF6FD
» 5C30D38768594D6CABTBED2CA8CAFEF0

* SMP Service

Block Harbor Cybersecurity 20

Pentest Report - Sep 21,2023

Testing SMP service functionality by fuzzing it with random bytes of data gave no results. It was noted
that the SMP service only accepts 20 characters of data.

* SMP Sel

SMP Characteristic u
b

writeWoResp notify

l L |
|th

[y &

Cliemt Characteristic Configuration

Using bluetoothct1 Block Harbor was able to connect to th- dongle through BLE protocol
without pairing or bonding.

uyetooth]# connect FB:D7:51:65:89:F2
Attemptlng to connect To FBID7:51:63:89:F2

[CHG] Device FB:D7:51:65:89:F2 Connected: yes
Connection successful

After successfully connecting to the dongle Block Harbor could enumerate the services that are present
in the BLE protocol and the information of the services are in the figure below. However, none of the
services were exploitable during testing.

Block Harbor Cybersecurity 21

Pentest Report - Sep 21,2023

Primary Service (Handle 0x0000)
/org/bluez/hci@/dev_FB_D7_51_65_89_F2/serviceo0l
00001801-0000-1000-8000-00805T9b34Tb
Generic Attribute Profile

Characteristic (Handle 0x0000)
/org/bluez/hci@/dev_FB_D7_51_65_89_F2/service@001/char00o2
00002a05-0000-1000-8000-00805T9b34fb
Service Changed

[NEW] Descriptor (Handle @0x0000)
/oxrg/bluez/hci@/dev_FB_D7_51_65_89_F2/service@@@1/char@002/desc0004
00002902-0000-1000-8000-00805T9b34fb
Client Characteristic Configuration

Characteristic (Handle 0x0000)
/oxrg/bluez/hci@/dev_FB_D7_51_65_89_F2/service@001/char@eos
00002b29-0000-1000-8000-00805T9b34Tb
Client Supported Features

Characteristic (Handle 0x0000)
/oxrg/bluez/hci@/dev_FB_D7_51_65_89_F2/service@@@1l/chareeo7
00002b2a-0000-1000-8000-00805T9b34fb
Database Hash

Primary Service (Handle 0x0000)
/org/bluez/hci@/dev_FB_D7_51_65_89_F2/service0010
5c30cal0-6859-4d6c-a87b-8d2c98c9f6T0
Vendor specific

Characteristic (Handle 0x@000)
/oxrg/bluez/hci@/dev_FB_D7_51_65_89_F2/service001@/chareoll
5c30ca@1-6859-4d6c-a87b-8d2c98c9f6f0
Vendor specific

Characteristic (Handle 0x0000)
/oxrg/bluez/hci@/dev_FB_D7_51_65_89_F2/service0010/chare013
5c30ca02-6859-4d6c-a87b-8d2c98c9f6T0
Vendor specific

Descriptor (Handle 0x0000)
/oxrg/bluez/hci@/dev_FB_D7_51_65_89_F2/service@010/char@@13/desc@@15
00002902-0000-1000-8000-00805T9b34Tb
Client Characteristic Configuration

Primary Service (Handle 0x0000)
/org/bluez/hci@/dev_FB_D7_51_65_89_F2/service@016
5c307fa4-6859-4d6c-a87b-8d2c98c9f6T0
Vendor specific

Characteristic (Handle 0x@000)
/oxrg/bluez/hci@/dev_FB_D7_51_65_89_F2/service@@16/chare017
5c¢305a11-6859-4d6c-a87b-8d2c98c9f6f0

Block Harbor Cybersecurity

Pentest Report - Sep 21,2023

Characteristic (Handle 0x0000)
/oxrg/bluez/hci@/dev_FB_D7_51_65_89_F2/service@@16/chareeld
5c¢305a19-6859-4d6c-a87b-8d2c98c9f6T0
Vendor specific

Characteristic (Handle 0x0000)
/oxrg/bluez/hci@/dev_FB_D7_51_65_89_F2/service@@16/char@olf
5c¢305a18-6859-4d6c-a87b-8d2c98c9f6f0
Vendor specific

Primary Service (Handle @x0000)
/oxrg/bluez/hci@/dev_FB_D7_51_65_89_F2/service0021
5c30aade-6859-4d6c-a87b-8d2c98c9f6f0
Vendor specific

Characteristic (Handle 0x0000)
/org/bluez/hci@/dev_FB_D7_51_65_89_F2/service@021/char@e22
5c301dd2-6859-4d6c-a87b-8d2c98c9f6T0
Vendor specific

Characteristic (Handle 0x0000)
/oxrg/bluez/hci@/dev_FB_D7_51_65_89_F2/service@@21/char0024
5c¢30e60T-6859-4d6c-a87b-8d2c98c9f6f0
Vendor specific

Primary Service (Handle @x2000)
/oxrg/bluez/hci@/dev_FB_D7_51_65_89_F2/service@026
5¢30d387-6859-4d6c-a87b-8d2c98c9f6f0
Vendor specific

Characteristic (Handle 0x@000)
/org/bluez/hci@/dev_FB_D7_51_65_89_F2/service@026/char0e27
5c300acc-6859-4d6c-a87b-8d2c98c9f6f0
Vendor specific

Characteristic (Handle 0x0000)
/org/bluez/hci@/dev_FB_D7_51_65_89_F2/service@026/char@e29
5c300add-6859-4d6c-a87b-8d2c98c9f6T0
Vendor specific

Primary Service (Handle @x0000)
/oxrg/bluez/hci@/dev_FB_D7_51_65_89_F2/sexrvice@@2b
8d53dc1ld-1db7-4cd3-868b-8a527460aa84
Vendor specific

Characteristic (Handle 0x0000)
/oxrg/bluez/hci@/dev_FB_D7_51_65_89_F2/service@@2b/char@e2c
da2e7828-fbce-4e@l1-ae%9e-261174997c48
Vendor specific

Descriptor (Handle @x0000)
/org/bluez/hci@/dev_FB_D7_51_65_89_F2/service@02b/char@@2c/desc002e
00002902-0000-1000-8000-00805T9b34Thb
Client Characteristic Configuration

Block Harbor was able to enumerate the general information about the device using bluetoothctl after

Block Harbor Cybersecurity

Pentest Report - Sep 21,2023

connecting with the_

nacaron-24601590004]# info FB:D7:51:65:89:F2
Device FB:D7:51:65:89:F2 (random)
Name: 1601590004
Alias: 24601590004
Paired: no
Trusted: yes
Blocked: no
Connected: yes
LegacyPairing: no
UUID: Generic Access Profile (00001800-0000-1000-8000-00805T9b34Th)
UUID: Generic Attribute Profile (00001801-0000-1000-8000-00805T9b34Th)
UUID: Vendor specific (5c307fa4-6859-4d6c-a87b-8d2c98c9T6T0)
UUID: Vendor specific (5c30aade-6859-4d6c-a87b-8d2c98c9T6T0)
UUID: Vendor specific (5c30cal@-6859-4d6c-a87b-8d2c98c9f6T0)
UUID: Vendor specific (5c30d387-6859-4d6c-a87b-8d2c98c9f6T0)
UUID: Vendor specific (8d53dc1d-1db7-4cd3-868b-8a527460aa84)
. . 2414

9.3 Tested Bluetooth Exploits
9.3.1 Braktooth

Various exploits within the Braktooth test suite were tested against th- dongle and the results
confirm that the-dongle is not vulnerable against these attacks.

9.3.2 Random Flooding (Not Vulnerable)

The- device is not vulnerable to the random byte flooding attack performed against the BLE
services. The device did not seem to crash during the test.

Block Harbor Cybersecurity 24

Sep 21,2023

Loading Model...

Loop detection ENABLED
[Modules] Loading C++ Modules...

[BT Program] Starting program bin/sdp_rfcomm_guery
Packet Log: logs/Bluetooth/hci_dump.pklg

H4 device:

address=FB:D7:51:65:89:F2

authreq=3

bouding=1
version information:
Version 0x0008
Revision ©0x@30@e
Version 0x0008

- LMP Subversion 0x@3@e

- Manufacturer 0x0060

u /dev/pts/6 -a FB:D7:51:65:89:F2

Unknown manufacturer / manufacturer not supported yet.

Local name:
BTstack up and running on 46:D5:F1:2D:3A:39.
Starting RFCOMM Query

SDP query failed 0x@4, retrying...

SDP query failed 0x@4, retrying...

9.3.3 KNOB (Not Vulnerable)

iocap 3 authreq 3 bounding 1

This specific BLE attack attempts to exploit the key negotiation functionality in the BLE protocol, Block

Harbor was able to confirm that the- dongle is not vulnerable against this attack.

Block Harbor Cybersecurity

25

Sep 21,2023

Host BDAddress randomized to 82:31:2b:17:b9:70
[!] Global timeout started with 45 seconds
Packet Log: logs/Bluetooth/hci_dump.pklg

H4 device: /dev/pts/6
address=FB:D7:51:65:89:F2

version information:
Version 0x0008
Revision 0x030e
Version 0x0008
Subversion @x@30e
Manufacturer @x@060
Unknown manufacturer / manufacturer not supported yet.
Local name:
BTstack up and running on 82:31:2B:17:B9:70.
Starting RFCOMM Query

SDP query failed @x@4, retrying...

SDP query failed @x@4, retrying...

9.4 Sweyntooth Attack Suite
9.4.1 Summary

Various exploits within the Sweyntooth test suite were tested against the-dongle and the results

confirm that the-dongle is not vulnerable against these attacks and has not crashed.

9.4.2 Attack script - Microchip_non_compliant connection (Not Vulnerable)

_ did not crash during this test and Block Harbor confirmed to be not exploitable against
this attack.

Block Harbor Cybersecurity 26

Sep 21,2023

9.4.3 Attack script - anomaly_unexptected_encryption_start (Not Vulnerable)

-dongle did not crash during this test and Block Harbor confirmed to be not exploitable against

this attack.
) sudo ./docker.sh run extras/anomaly_unexpected_encryption_start.py /dev/ttyACM® FB:D7:51:65:89:F2

9.4.4 Attack script - connection_req_crash_truncated (Not vulnerable)

- dongle did not crash during this test and Block Harbor confirmed to be not exploitable against
this attack.

Block Harbor Cybersecurity 27

Sep 21,2023

Block Harbor Cybersecurity 28

10 Appendix

10.1 Acronyms

+ SWD: Serial Wire Debug

OSINT: Open Source Intelligence

CVE: Common Vulnerabilities and Exposures
PCB: Printed Circuit Board

« CAN: Controller Area Network

Block

Harbor.

Cybersecurity

Business Details Contact
9 AM-5PM 313.246.1860
313.246.1860

contactus@blockharbor.io

Learn More
blockharbor.io

